Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Mol Cell Biol ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968137

RESUMO

The transforming growth factor-beta (TGFß) signaling pathway plays crucial roles in the establishment of an immunosuppressive tumor microenvironment, making anti-TGFß agents a significant area of interest in cancer immunotherapy. However, the clinical translation of current anti-TGFß agents that target upstream cytokines and receptors remains challenging. Therefore, the development of small-molecule inhibitors specifically targeting SMAD4, the downstream master regulator of the TGFß pathway, would offer an alternative approach with significant therapeutic potential for anti-TGF-ß signaling. In this study, we present the development of a cell lysate-based multiplexed time-resolved fluorescence resonance energy transfer (TR-FRET) assay in an ultrahigh-throughput screening (uHTS) 1536-well plate format. This assay enables simultaneous monitoring of the protein‒protein interaction between SMAD4 and SMAD3, as well as the protein‒DNA interaction between SMADs and their consensus DNA-binding motif. The multiplexed TR-FRET assay exhibits high sensitivity, allowing the dynamic analysis of the SMAD4-SMAD3-DNA complex at single-amino acid resolution. Moreover, the multiplexed uHTS assay demonstrates robustness for screening small-molecule inhibitors. Through a pilot screening of an FDA-approved bioactive compound library, we identified gambogic acid and gambogenic acid as potential hit compounds. These proof-of-concept findings underscore the utility of our optimized multiplexed TR-FRET platform for large-scale screening to discover small-molecule inhibitors that target the SMAD4-SMAD3-DNA complex as novel anti-TGFß signaling agents.

2.
bioRxiv ; 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37503208

RESUMO

The signaling pathway of transforming growth factor-beta (TGFß) plays crucial roles in the establishment of an immunosuppressive tumor microenvironment, making anti-TGFß agents a significant area of interest in cancer immunotherapy. However, the clinical translation of current anti-TGFß agents that target upstream cytokines and receptors remains challenging. Therefore, the development of small molecule inhibitors specifically targeting SMAD4, the downstream master regulator of TGFß pathway, would offer an alternative approach with significant therapeutic potential for anti-TGF-ß signaling. In this study, we present the development of a cell lysate-based multiplexed time-resolved fluorescence resonance energy transfer (TR-FRET) assay in an ultrahigh-throughput screening (uHTS) 1536-well plate format. This assay enables simultaneous monitoring of the protein-protein interaction (PPI) between SMAD4 and SMAD3, as well as the protein-DNA interaction (PDI) between SMADs and their consensus DNA binding motif. The multiplexed TR-FRET assay exhibits high sensitivity, allowing the dynamic analysis of the SMAD4-SMAD3-DNA complex at single amino acid resolution. Moreover, the multiplexed uHTS assay demonstrates robustness for screening small molecule inhibitors. Through a pilot screening of an FDA-approved and bioactive compound library, we identified gambogic acid and gambogenic acid as potential hit compounds. These proof-of-concept findings underscore the utility of our optimized multiplexed TR-FRET platform for large-scale screening to discover small molecule inhibitors that target the SMAD4-SMAD3-DNA complex as novel anti-TGFß signaling agents.

3.
J Mol Cell Biol ; 15(3)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-36921991

RESUMO

SARS-CoV-2, the coronavirus that causes the disease COVID-19, has claimed millions of lives over the past 2 years. This demands rapid development of effective therapeutic agents that target various phases of the viral replication cycle. The interaction between host transmembrane serine protease 2 (TMPRSS2) and viral SPIKE protein is an important initial step in SARS-CoV-2 infection, offering an opportunity for therapeutic development of viral entry inhibitors. Here, we report the development of a time-resolved fluorescence/Förster resonance energy transfer (TR-FRET) assay for monitoring the TMPRSS2-SPIKE interaction in lysate from cells co-expressing these proteins. The assay was configured in a 384-well-plate format for high-throughput screening with robust assay performance. To enable large-scale compound screening, we further miniaturized the assay into 1536-well ultrahigh-throughput screening (uHTS) format. A pilot screen demonstrated the utilization of the assay for uHTS. Our optimized TR-FRET uHTS assay provides an enabling platform for expanded screening campaigns to discover new classes of small-molecule inhibitors that target the SPIKE and TMPRSS2 protein-protein interaction.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Ensaios de Triagem em Larga Escala , Serina Endopeptidases
4.
Cell ; 185(11): 1974-1985.e12, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35512704

RESUMO

Comprehensive sequencing of patient tumors reveals genomic mutations across tumor types that enable tumorigenesis and progression. A subset of oncogenic driver mutations results in neomorphic activity where the mutant protein mediates functions not engaged by the parental molecule. Here, we identify prevalent variant-enabled neomorph-protein-protein interactions (neoPPI) with a quantitative high-throughput differential screening (qHT-dS) platform. The coupling of highly sensitive BRET biosensors with miniaturized coexpression in an ultra-HTS format allows large-scale monitoring of the interactions of wild-type and mutant variant counterparts with a library of cancer-associated proteins in live cells. The screening of 17,792 interactions with 2,172,864 data points revealed a landscape of gain of interactions encompassing both oncogenic and tumor suppressor mutations. For example, the recurrent BRAF V600E lesion mediates KEAP1 neoPPI, rewiring a BRAFV600E/KEAP1 signaling axis and creating collateral vulnerability to NQO1 substrates, offering a combination therapeutic strategy. Thus, cancer genomic alterations can create neo-interactions, informing variant-directed therapeutic approaches for precision medicine.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas B-raf , Carcinogênese , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Mutação , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo
5.
Acta Pharmacol Sin ; 43(9): 2419-2428, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35031699

RESUMO

Ovarian cancer is one of the most common gynecologic malignancies in women and has a poor prognosis. Taxanes are a class of standard first-line chemotherapeutic agents for the treatment of ovarian cancer. However, tumor-intrinsic and acquired resistance to taxanes poses major challenges to improving clinical outcomes. Hence, there is an urgent clinical need to understand the mechanisms of resistance in order to discover potential biomarkers and therapeutic strategies to increase taxane sensitivity in ovarian cancer. Here, we report the identification of an association between the TP53 status and taxane sensitivity in ovarian cancer cells through complementary experimental and informatics approaches. We found that TP53 inactivation is associated with taxane resistance in ovarian cancer cells, supported by the evidence from (i) drug sensitivity profiling with bioinformatic analysis of large-scale cancer therapeutic response and genomic datasets and (ii) gene signature identification based on experimental isogenic cell line models. Further, our studies revealed TP53-dependent gene expression patterns, such as overexpression of ACSM3, as potential predictive biomarkers of taxane resistance in ovarian cancer. The TP53-dependent hyperactivation of the WNT/ß-catenin pathway discovered herein revealed a potential vulnerability to exploit in developing combination therapeutic strategies. Identification of this genotype-phenotype relationship between the TP53 status and taxane sensitivity sheds light on TP53-directed patient stratification and therapeutic discoveries for ovarian cancer treatment.


Assuntos
Neoplasias Ovarianas , Proteína Supressora de Tumor p53 , Hidrocarbonetos Aromáticos com Pontes , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Paclitaxel/uso terapêutico , Taxoides/farmacologia , Taxoides/uso terapêutico , Proteína Supressora de Tumor p53/genética
6.
STAR Protoc ; 2(3): 100804, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34527960

RESUMO

Protein-protein interactions (PPIs) have emerged as promising yet challenging therapeutic targets. A robust bioassay is required for rapid PPI modulator discovery. Here, we present a time-resolved Förster's (fluorescence) resonance energy transfer assay protocol for PPI modulator screening in a 1536-well plate format. We use hypomorph SMAD4R361H-SMAD3 PPI as an example to illustrate the application of the protocol for screening of variant-directed PPI inducers. This platform can be readily adapted for the discovery of both small-molecule PPI inducers and inhibitors. For complete details on the use and execution of this protocol, please refer to Tang et al. (2020).


Assuntos
Descoberta de Drogas/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Mapas de Interação de Proteínas/efeitos dos fármacos , Bioensaio/métodos , Células HEK293 , Humanos , Proteína Smad4/metabolismo
7.
Cell ; 184(5): 1142-1155, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33667368

RESUMO

The characterization of cancer genomes has provided insight into somatically altered genes across tumors, transformed our understanding of cancer biology, and enabled tailoring of therapeutic strategies. However, the function of most cancer alleles remains mysterious, and many cancer features transcend their genomes. Consequently, tumor genomic characterization does not influence therapy for most patients. Approaches to understand the function and circuitry of cancer genes provide complementary approaches to elucidate both oncogene and non-oncogene dependencies. Emerging work indicates that the diversity of therapeutic targets engendered by non-oncogene dependencies is much larger than the list of recurrently mutated genes. Here we describe a framework for this expanded list of cancer targets, providing novel opportunities for clinical translation.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Genômica , Humanos , Neoplasias/genética , Neoplasias/patologia , Evasão Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
8.
Cell Chem Biol ; 28(5): 636-647.e5, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33326750

RESUMO

Tumor suppressor genes represent a major class of oncogenic drivers. However, direct targeting of loss-of-function tumor suppressors remains challenging. To address this gap, we explored a variant-directed chemical biology approach to reverse the lost function of tumor suppressors using SMAD4 as an example. SMAD4, a central mediator of the TGF-ß pathway, is recurrently mutated in many tumors. Here, we report the development of a TR-FRET technology that recapitulated the dynamic differential interaction of SMAD4 and SMAD4R361H with SMAD3 and identified Ro-31-8220, a bisindolylmaleimide derivative, as a SMAD4R361H/SMAD3 interaction inducer. Ro-31-8220 reactivated the dormant SMAD4R361H-mediated transcriptional activity and restored TGF-ß-induced tumor suppression activity in SMAD4 mutant cancer cells. Thus, demonstration of Ro-31-8220 as a SMAD4R361H/SMAD3 interaction inducer illustrates a general strategy to reverse the lost function of tumor suppressors with hypomorph mutations and supports a systematic approach to develop small-molecule protein-protein interaction (PPI) molecular glues for biological insights and therapeutic discovery.


Assuntos
Indóis/metabolismo , Proteína Smad4/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular , Feminino , Transferência Ressonante de Energia de Fluorescência , Genes Supressores de Tumor , Humanos , Indóis/química , Masculino , Ligação Proteica , Transdução de Sinais/genética , Proteína Smad4/química , Proteína Smad4/genética , Bibliotecas de Moléculas Pequenas/química , Fator de Crescimento Transformador beta/genética
9.
J Mol Cell Biol ; 12(8): 630-643, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32678871

RESUMO

The recent advent of robust methods to grow human tissues as 3D organoids allows us to recapitulate the 3D architecture of tumors in an in vitro setting and offers a new orthogonal approach for drug discovery. However, organoid culturing with extracellular matrix to support 3D architecture has been challenging for high-throughput screening (HTS)-based drug discovery due to technical difficulties. Using genetically engineered human colon organoids as a model system, here we report our effort to miniaturize such 3D organoid culture with extracellular matrix support in high-density plates to enable HTS. We first established organoid culturing in a 384-well plate format and validated its application in a cell viability HTS assay by screening a 2036-compound library. We further miniaturized the 3D organoid culturing in a 1536-well ultra-HTS format and demonstrated its robust performance for large-scale primary compound screening. Our miniaturized organoid culturing method may be adapted to other types of organoids. By leveraging the power of 3D organoid culture in a high-density plate format, we provide a physiologically relevant screening platform to model tumors to accelerate organoid-based research and drug discovery.


Assuntos
Técnicas de Cultura de Células/métodos , Ensaios de Triagem em Larga Escala , Miniaturização , Organoides/citologia , Forma Celular , Colo/citologia , Criopreservação , Humanos , Imageamento Tridimensional
10.
Cell Chem Biol ; 26(3): 331-339.e3, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30639259

RESUMO

Protein- and cell-based immunotherapeutic agents have revolutionized cancer treatment. However, small-molecule immunomodulators with favorable pharmacological properties for reaching intracellular targets remain to be developed. To explore the vast chemical space, a robust method that recapitulates the complex cancer-immune microenvironment in a high-throughput format is essential. To address this critical gap, we developed a high-throughput immunomodulator phenotypic screening platform, HTiP, which integrates the immune and cancer cell co-culture system with imaging- and biochemical-based multiplexed readouts. Using the HTiP platform, we have demonstrated its capability in modeling an oncogenic KRAS mutation-driven immunosuppressive phenotype. From a bioactive chemical library, multiple structurally distinct compounds were identified, all of which target the same class of proteins, inhibitor of apoptosis protein (IAP). IAP has demonstrated roles in cancer immunity. Identification of IAP antagonists as potent anti-tumor immune enhancers provides strong validating evidence for the use of the HTiP platform to discover small-molecule immunomodulators.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Fatores Imunológicos/química , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dipeptídeos/farmacologia , Humanos , Fatores Imunológicos/farmacologia , Indóis/farmacologia , Proteínas Inibidoras de Apoptose/metabolismo , Interferon gama/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Microambiente Tumoral , Fator de Necrose Tumoral alfa/metabolismo
11.
J Mol Cell Biol ; 10(6): 549-558, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30496488

RESUMO

Apoptosis signal-regulating kinase 1 (ASK1) is an important mediator of the cell stress response pathways. Because of its central role in regulating cell death, the activity of ASK1 is tightly regulated by protein-protein interactions and post-translational modifications. Deregulation of ASK1 activity has been linked to human diseases, such as neurological disorders and cancer. Here we describe the identification and characterization of large tumor suppressor 2 (LATS2) as a novel binding partner for ASK1. LATS2 is a core kinase in the Hippo signaling pathway and is commonly downregulated in cancer. We found that LATS2 interacts with ASK1 and increases ASK1-mediated signaling to promote apoptosis and activate the JNK mitogen-activated protein kinase (MAPK). This change in MAPK signaling is dependent on the catalytic activity of ASK1 but does not require LATS2 kinase activity. This work identifies a novel role for LATS2 as a positive regulator of the ASK1-MKK-JNK signaling pathway and establishes a kinase-independent function of LATS2 that may be part of the intricate regulatory system for cellular response to diverse stress signals.


Assuntos
Ativação Enzimática , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Apoptose , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Ligação Proteica , Mapas de Interação de Proteínas
12.
Nat Commun ; 9(1): 2732, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013058

RESUMO

Genetic aberrations driving pro-oncogenic and pro-metastatic activity remain an elusive target in the quest of precision oncology. To identify such drivers, we use an animal model of KRAS-mutant lung adenocarcinoma to perform an in vivo functional screen of 217 genetic aberrations selected from lung cancer genomics datasets. We identify 28 genes whose expression promoted tumor metastasis to the lung in mice. We employ two tools for examining the KRAS-dependence of genes identified from our screen: 1) a human lung cell model containing a regulatable mutant KRAS allele and 2) a lentiviral system permitting co-expression of DNA-barcoded cDNAs with Cre recombinase to activate a mutant KRAS allele in the lungs of mice. Mechanistic evaluation of one gene, GATAD2B, illuminates its role as a dual activity gene, promoting both pro-tumorigenic and pro-metastatic activities in KRAS-mutant lung cancer through interaction with c-MYC and hyperactivation of the c-MYC pathway.


Assuntos
Adenocarcinoma de Pulmão/genética , Fatores de Transcrição GATA/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/terapia , Animais , Linhagem Celular Tumoral , Feminino , Fatores de Transcrição GATA/antagonistas & inibidores , Fatores de Transcrição GATA/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Integrases/genética , Integrases/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Camundongos , Camundongos Nus , Metástase Neoplásica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras , Transdução de Sinais , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Assay Drug Dev Technol ; 16(2): 96-106, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29634317

RESUMO

Epigenetic modulators play critical roles in reprogramming of cellular functions, emerging as a new class of promising therapeutic targets. Nuclear receptor binding SET domain protein 3 (NSD3) is a member of the lysine methyltransferase family. Interestingly, the short isoform of NSD3 without the methyltransferase fragment, NSD3S, exhibits oncogenic activity in a wide range of cancers. We recently showed that NSD3S interacts with MYC, a central regulator of tumorigenesis, suggesting a mechanism by which NSD3S regulates cell proliferation through engaging MYC. Thus, small molecule inhibitors of the NSD3S/MYC interaction will be valuable tools for understanding the function of NSD3 in tumorigenesis for potential cancer therapeutic discovery. Here we report the development of a cell lysate-based time-resolved fluorescence resonance energy transfer (TR-FRET) assay in an ultrahigh-throughput screening (uHTS) format to monitor the interaction of NSD3S with MYC. In our TR-FRET assay, anti-Flag-terbium and anti-glutathione S-transferase (GST)-d2, a paired fluorophores, were used to indirectly label Flag-tagged NSD3 and GST-MYC in HEK293T cell lysates. This TR-FRET assay is robust in a 1,536-well uHTS format, with signal-to-background >8 and a Z' factor >0.7. A pilot screening with the Spectrum library of 2,000 compounds identified several positive hits. One positive compound was confirmed to disrupt the NSD3/MYC interaction in an orthogonal protein-protein interaction assay. Thus, our optimized uHTS assay could be applied to future scaling up of a screening campaign to identify small molecule inhibitors targeting the NSD3/MYC interaction.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Ensaios de Triagem em Larga Escala , Histona-Lisina N-Metiltransferase/química , Proteínas Nucleares/química , Proteínas Proto-Oncogênicas c-myc/química , Células HEK293 , Humanos , Ligação Proteica , Fatores de Tempo
14.
Nat Biotechnol ; 36(2): 170-178, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29334369

RESUMO

Understanding the direction of information flow is essential for characterizing how genetic networks affect phenotypes. However, methods to find genetic interactions largely fail to reveal directional dependencies. We combine two orthogonal Cas9 proteins from Streptococcus pyogenes and Staphylococcus aureus to carry out a dual screen in which one gene is activated while a second gene is deleted in the same cell. We analyze the quantitative effects of activation and knockout to calculate genetic interaction and directionality scores for each gene pair. Based on the results from over 100,000 perturbed gene pairs, we reconstruct a directional dependency network for human K562 leukemia cells and demonstrate how our approach allows the determination of directionality in activating genetic interactions. Our interaction network connects previously uncharacterized genes to well-studied pathways and identifies targets relevant for therapeutic intervention.


Assuntos
Proteína 9 Associada à CRISPR/genética , Epistasia Genética/genética , Redes Reguladoras de Genes/genética , Biologia Computacional , Técnicas de Inativação de Genes , Humanos , Células K562 , Staphylococcus aureus/genética , Streptococcus pyogenes/genética , Ativação Transcricional/genética
15.
Bioinformatics ; 34(7): 1183-1191, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29186335

RESUMO

Motivation: As cancer genomics initiatives move toward comprehensive identification of genetic alterations in cancer, attention is now turning to understanding how interactions among these genes lead to the acquisition of tumor hallmarks. Emerging pharmacological and clinical data suggest a highly promising role of cancer-specific protein-protein interactions (PPIs) as druggable cancer targets. However, large-scale experimental identification of cancer-related PPIs remains challenging, and currently available resources to explore oncogenic PPI networks are limited. Results: Recently, we have developed a PPI high-throughput screening platform to detect PPIs between cancer-associated proteins in the context of cancer cells. Here, we present the OncoPPi Portal, an interactive web resource that allows investigators to access, manipulate and interpret a high-quality cancer-focused network of PPIs experimentally detected in cancer cell lines. To facilitate prioritization of PPIs for further biological studies, this resource combines network connectivity analysis, mutual exclusivity analysis of genomic alterations, cellular co-localization of interacting proteins and domain-domain interactions. Estimates of PPI essentiality allow users to evaluate the functional impact of PPI disruption on cancer cell proliferation. Furthermore, connecting the OncoPPi network with the approved drugs and compounds in clinical trials enables discovery of new tumor dependencies to inform strategies to interrogate undruggable targets like tumor suppressors. The OncoPPi Portal serves as a resource for the cancer research community to facilitate discovery of cancer targets and therapeutic development. Availability and implementation: The OncoPPi Portal is available at http://oncoppi.emory.edu. Contact: andrey.ivanov@emory.edu or hfu@emory.edu.


Assuntos
Computação em Nuvem , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Mapeamento de Interação de Proteínas/métodos , Humanos , Internet
17.
Nat Commun ; 8: 14356, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28205554

RESUMO

As genomics advances reveal the cancer gene landscape, a daunting task is to understand how these genes contribute to dysregulated oncogenic pathways. Integration of cancer genes into networks offers opportunities to reveal protein-protein interactions (PPIs) with functional and therapeutic significance. Here, we report the generation of a cancer-focused PPI network, termed OncoPPi, and identification of >260 cancer-associated PPIs not in other large-scale interactomes. PPI hubs reveal new regulatory mechanisms for cancer genes like MYC, STK11, RASSF1 and CDK4. As example, the NSD3 (WHSC1L1)-MYC interaction suggests a new mechanism for NSD3/BRD4 chromatin complex regulation of MYC-driven tumours. Association of undruggable tumour suppressors with drug targets informs therapeutic options. Based on OncoPPi-derived STK11-CDK4 connectivity, we observe enhanced sensitivity of STK11-silenced lung cancer cells to the FDA-approved CDK4 inhibitor palbociclib. OncoPPi is a focused PPI resource that links cancer genes into a signalling network for discovery of PPI targets and network-implicated tumour vulnerabilities for therapeutic interrogation.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/genética , Oncogenes/efeitos dos fármacos , Oncogenes/genética , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas/genética , Quinases Proteína-Quinases Ativadas por AMP , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Bases de Dados de Proteínas , Genes Supressores de Tumor/efeitos dos fármacos , Genes myc/genética , Genômica , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Terapia de Alvo Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oncogenes/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Mapeamento de Interação de Proteínas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
18.
Mol Pharmacol ; 91(4): 339-347, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28087810

RESUMO

The c-Myc (MYC) transcription factor is a major cancer driver and a well-validated therapeutic target. However, directly targeting MYC has been challenging. Thus, identifying proteins that interact with and regulate MYC may provide alternative strategies to inhibit its oncogenic activity. In this study, we report the development of a NanoLuc-based protein-fragment complementation assay (NanoPCA) and mapping of the MYC protein interaction hub in live mammalian cells. The NanoPCA system was configured to enable detection of protein-protein interactions (PPI) at the endogenous level, as shown with PRAS40 dimerization, and detection of weak interactions, such as PINCH1-NCK2. Importantly, NanoPCA allows the study of PPI dynamics with reversible interactions. To demonstrate its utility for large-scale PPI detection in mammalian intracellular environment, we have used NanoPCA to examine MYC interaction with 83 cancer-associated proteins in live cancer cell lines. Our new MYC PPI data confirmed known MYC-interacting proteins, such as MAX, GSK3A, and SMARCA4, and revealed a panel of novel MYC interaction partners, such as RAC-α serine/threonine-protein kinase (AKT)1, liver kinase B (LKB)1, and Yes-associated protein (YAP)1. The MYC interactions with AKT1, LKB1, and YAP1 were confirmed by coimmunoprecipitation of endogenous proteins. Importantly, AKT1, LKB1, and YAP1 were able to activate MYC in a transcriptional reporter assay. Thus, these vital growth control proteins may represent promising MYC regulators, suggesting new mechanisms that couple energetic and metabolic pathways and developmental signaling to MYC-regulated cellular programs.


Assuntos
Bioensaio , Luciferases/metabolismo , Nanopartículas/química , Fosfoproteínas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Ligação Proteica , Reprodutibilidade dos Testes
19.
Methods Mol Biol ; 1439: 263-71, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27317001

RESUMO

Bioluminescence resonance energy transfer (BRET) is a prominent biophysical technology for monitoring molecular interactions, and has been widely used to study protein-protein interactions (PPI) in live cells. This technology requires proteins of interest to be associated with an energy donor (i.e., luciferase) and an acceptor (e.g., fluorescent protein) molecule. Upon interaction of the proteins of interest, the donor and acceptor will be brought into close proximity and energy transfer of chemical reaction-induced luminescence to its corresponding acceptor will result in an increased emission at an acceptor-defined wavelength, generating the BRET signal. We leverage the advantages of the superior optical properties of the NanoLuc(®) luciferase (NLuc) as a BRET donor coupled with Venus, a yellow fluorescent protein, as acceptor. We term this NLuc-based BRET platform "BRET(n)". BRET(n) has been demonstrated to have significantly improved assay performance, compared to previous BRET technologies, in terms of sensitivity and scalability. This chapter describes a step-by-step practical protocol for developing a BRET(n) assay in a multi-well plate format to detect PPIs in live mammalian cells.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas de Cultura de Células/métodos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Humanos , Luciferases/genética , Luciferases/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Plasmídeos/genética , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção/métodos , Proteínas de Sinalização YAP
20.
J Mol Cell Biol ; 8(3): 271-81, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26578655

RESUMO

Large-scale genomics studies have generated vast resources for in-depth understanding of vital biological and pathological processes. A rising challenge is to leverage such enormous information to rapidly decipher the intricate protein-protein interactions (PPIs) for functional characterization and therapeutic interventions. While a number of powerful technologies have been employed to detect PPIs, a singular PPI biosensor platform with both high sensitivity and robustness in a mammalian cell environment remains to be established. Here we describe the development and integration of a highly sensitive NanoLuc luciferase-based bioluminescence resonance energy transfer technology, termed BRET(n), which enables ultra-high-throughput (uHTS) PPI detection in live cells with streamlined co-expression of biosensors in a miniaturized format. We further demonstrate the application of BRET(n) in uHTS format in chemical biology research, including the discovery of chemical probes that disrupt PRAS40 dimerization and pathway connectivity profiling among core members of the Hippo signaling pathway. Such hippo pathway profiling not only confirmed previously reported PPIs, but also revealed two novel interactions, suggesting new mechanisms for regulation of Hippo signaling. Our BRET(n) biosensor platform with uHTS capability is expected to accelerate systematic PPI network mapping and PPI modulator-based drug discovery.


Assuntos
Técnicas Biossensoriais/métodos , Ensaios de Triagem em Larga Escala/métodos , Mapeamento de Interação de Proteínas/métodos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fluorescência , Células HEK293 , Humanos , Imidazóis/farmacologia , Luciferases/metabolismo , Miniaturização , Piperazinas/farmacologia , Multimerização Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...